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Transition metal-catalyzed alkyne coupling reactions are of
genuine synthetic utility in preparingπ-conjugated four-carbon
compounds such as enynes.1 Among the straightforward, practical
methods leading to enynes is the dimerization of terminal alkynes,
which may give rise to head-to-tail andE- andZ-tail-to-tail products,
and thus, much effort has been focused on the control of the regio-
and stereoselectivity.2 In such a coupling, an alkynylmetal inter-
mediate generated by sp C-H bond activation is involved as the
key catalytic species.

Meanwhile, catalytic processes involving C-C bond cleavage
via â-carbon elimination (deinsertion) have recently attracted
considerable attention since they may bring about new, useful syn-
thetic routes in some cases.3 Appropriately designed tertiary alcohols
have been demonstrated to be suitable substrates which can undergo
selective cleavage of one of the three C-C bonds to form an
organometal intermediate along with a ketone (Scheme 1).

As part of our study of the above processes,4 we have undertaken
the use oftert-propargyl alcohols in alkyne coupling. It has been
found that in the presence of a rhodium catalyst, 1,1-disubstituted
3-aryl-2-propyn-1-ols undergo unprecedented unique homocoupling
efficiently and regio- and stereoselectively with liberation of a
ketone molecule to produce the corresponding 2-hydroxymethyl-
(E)-enynes.5,6 The products are readily capable of cyclizing in the
presence of a base to form dihydrofuran derivatives, which exhibit
relatively strong fluorescence in the solid state (Scheme 2).

When 1,1,3-triphenyl-2-propyn-1-ol (1ap) was heated in the
presence of [Rh(OH)(cod)]2 (2 mol % of Rh) and dppp (2 mol %)
in refluxing toluene for 1 h, 2-[(E)-benzylidene]-1,1,4-triphenyl-
3-butyn-1-ol (2ap) was formed as the single coupling product in
96% yield (85% after purification; entry 1 in Table 1). As expected,
the formation of benzophenone in a quantitative yield (0.5 equiv)
was detected. Among other mono- and bidentate phosphine ligands
examined, dppf was fairly effective (entry 3). Reaction without any
phosphine ligand was sluggish (entry 5). The use of [RhCl(cod)]2

in place of the hydroxyl complex together with dppb was far less
effective (entry 6), while adding Na2CO3 as a base enhanced the
reaction to some extent (entry 7). Reaction of 2-methyl-4-phenyl-
3-butyn-2-ol (1am) proceeded similarly. In this case, ligand effects
were more significant (entries 8-14 vs 1-7).

The results for the reactions of a number of 1,1-diphenyl- and
1,1-dimethyl-3-(4-substituted-phenyl)-2-propyn-1-ols1 in the pres-

ence of [Rh(OH)(cod)]2 and dppb are shown in Scheme 3. In each
reaction, the corresponding enyne2 could be obtained with good
yield. The reaction with an aliphatic alkynol 2-methyl-3-hexyn-2-
ol, however, did not proceed.

A plausible mechanism for the formation of enynes2 from
alcohols1 is illustrated in Scheme 4, in which neutral ligands are
omitted. The first step involves the reaction of1 with hydroxy-
rhodium(I) species to form rhodium alcoholateA,7,8 and the
successiveâ-carbon elimination with liberation of benzophenone
or acetone gives alkynylrhodiumB. Then, regioselective insertion
of another molecule of1 to the rhodium-carbon bond affords
vinylrhodium C. Product 2 is formed after the geometrical
isomerization ofC to D and protonolysis by1 with regeneration
of A.9 It should be noted that the reaction of alcohol1ap was
remarkably hampered by adding 4-ethynyltoluene (1 equiv).10 This
suggests that the reaction leading to2ap does not involve
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Table 1. Rhodium-Catalyzed Reaction of 1,1,3-Triphenyl-
2-propyn-1-ol (1ap) and 2-Methyl-4-phenyl-3-butyn-2-ol (1am)a

X L entry % yield of 2apb entry % yield of 2amb

OH dppb 1 96 (85) 8 91 (81)
OH dppp 2 80 9 52
OH dppf 3 91 10 91
OH PPh3c 4 34 11 37
OH 5 30 12 0
Cl dppb 6 20 13 0
Cl dppb 7d 52 14d 14

a Reaction conditions:1 (1 mmol), Rh cat. (0.01 mmol), L (0.02 mmol),
in refluxing toluene (5 cm3) under N2. b GLC yield based on the amount of
1 used. Value in parentheses indicates isolated yield.c PPh3 (0.04 mmol)
was used.d Na2CO3 (0.1 mmol) was added.
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ethynylbenzene as the intermediate by the simple ketone elimination
of 1ap. The regioselectivity in the insertion of1 to B may be mainly
due to steric reasons.11 The geometrical isomerization ofC to D
may occur via a zwitterionic form.12 The interaction of the oxygen
with the metal may intervene to stabilizeD.

Cyclization of2 by addition of the hydroxy function to the alkyne
moiety may afford the corresponding dihydrofuran derivatives,
which are expected to exhibit fluorescent properties in the solid
state based on the literature.13 Since organic fluorescent solids have
become increasingly important as photofunctional materials, includ-
ing the components of electroluminescence (EL) devices,14 the
cyclization has also been undertaken. It has been found that a base-
promoted method usingt-BuOK15 is effective for the present case,
and the furans can be prepared by a one-pot procedure.

Sequential coupling-cyclization was carried out by heating1
in the presence of [Rh(OH)(cod)]2 and dppp in refluxing toluene
for 1 h and then at 60°C for 1 h after addingt-BuOK (1 equiv)
and DMSO to the mixture. Thus, 5-aryl-3-[(Z)-(arylmethylene)]-
2,2-diphenyl- and dimethylfurans (3) were successfully obtained
(Table 2). Under the same conditions, 3-(2-naphthyl)-1,1-diphenyl-
propyn-1-ol (1ep) and 9-(phenylethynyl)fluoren-9-ol (1af) gave the
expected furans3ep and 3af, respectively (Scheme 5). Using a
5-fold increase of1ap without changing the amounts of catalyst
and base, the reaction proceeded smoothly (entry 5). This demon-
strates high efficiency of the coupling reaction and indicates that
the cyclization can occur catalytically.

Preliminary fluorescence analysis of the furans (recrystallized
and powdered samples) indicated that3ap-3ep show emissions
in the green to yellow-green region and are relatively more
luminous than tris(8-hydroxyquinolino)aluminum (Alq3), which is
a well-known green emitter, by a factor range of 1.1-2.1 (3ap
1.1, 3bp 1.8, 3cp 1.2, 3dp 2.1, and3ep 1.1; see Supporting
Information).16,17While the factor of3am was 0.5, that of3af was
very small (<0.01). These results indicate that the structure of the
substituents at the nonconjugated 2-position as well as those of the

conjugated aryl groups significantly affects their fluorescent ef-
ficiency, probably by changing their crystal packing mode.18

In summary, we have shown a new, efficient catalytic alkyne
coupling; 1,1-disubstituted 3-aryl-2-propyn-1-ols undergo unique
homocoupling with liberation of a ketone throughâ-carbon
elimination to give 2-hydroxymethyl-(E)-enynes. The products are
useful precursors of dihydrofuran derivatives that exhibit intense
fluorescence in the solid state.
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Table 2. One-Pot Synthesis of 3-Benzylidene-2,3-dihydrofrans 3a

entry 1: X, R 3, % yieldb entry 1: X, R 3, % yieldb

1 1ap: H, Ph 3ap, 80 5c 1ap: H, Ph 3ap, 71
2 1bp: OMe, Ph 3bp, 74 6 1am: H, Me 3am, 72
3 1cp: Cl, Ph 3cp, 71 7 1bm: OMe, Me 3bm, 80
4 1dp: CF3, Ph 3dp, 70 8 1cm: Cl, Me 3cm, 70

a Reaction conditions:1 (1 mmol), [Rh(OH)(cod)]2 (0.01 mmol), dppb
(0.02 mmol), in refluxing toluene (1.5 mL) under N2 for 1 h. Then,t-BuOK
(1 mmol), DMSO (5 mL), 60°C for 1 h. b Isolated yield.c 1ap (5 mmol)
and toluene (2.5 mL) were used. The first reaction was for 2 h.

Scheme 5
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